时间: 2022年5月26日(星期四)9:00-11:00
地点:工科楼225,腾讯会议647-193-353
主办:华中农业大学
承办:食品科学技术学院
报告人1:孙西艳 9:00-10:00
(其中:学术报告45分钟;交流15分钟)
题目:基于合成生物技术构建高效微生物制造系统
Construction of efficient microbial manufacturing system based on synthetic biotechnology
摘要:微生物细胞工厂是天然产物(包括生物医药、能源、食品和化学品)绿色生物制造的核心环节。天然的微生物制造系统已逐渐无法满足当下工业生产的需求,因此如何获得绿色高效、多元稳健的微生物制造系统是目前亟待解决的关键问题之一。随着合成生物学、代谢工程、蛋白质(酶)工程、和纳米生物学的崛起和学科交叉融合,基于合成生物技术构建绿色高效的微生物制造系统为解决微生物天然产物高效制造系统的研发困境提供了新的思路和方法,它可以突破微生物天然产物发现和制造的瓶颈,设计新的生物合成途径,产生更多天然产物及类似物。在本研究中,我们从以下三个方面创新性构建了基于合成生物学技术的高效微生物制造系统:1)基因组设计、改造和组装——开发了高效“CRISPR/Cas9介导的基因组多基因同步快速融合编辑系统”用于重构酵母(Kluyveromyces marxianus)苯乙醇代谢途径并增强其生物合成;2)基因表达精准调控的定量化、模块化设计和构建——在基于可诱导合成转录因子的新型基因表达调控元件方面,构建了新型基于可诱导双功能合成转录因子的生物传感器实现酵母中心碳代谢动态调控和改造;在基于响应特定底物信号的基因表达调控方面,阐明了底物诱导的转录和代谢响应酯类芳香族化合物在酵母(Kluyveromyces marxianus)中生物合成产率提升机制;3)蛋白质/酶分子设计——开发了新型细胞表面展示蛋白/酶系统构建高效枯草芽孢杆菌基的全细胞生物催化剂(即酶/蛋白微纳颗粒)。本研究成功构建出发酵性能优异、鲁棒性强的非天然的高效微生物制造系统,实现了重要活性天然产物的高产。基于合成生物技术构建绿色高效的微生物制造系统的发展应用有望为食品、能源、医药、化工等行业带来革命性的技术变革。
Microbial cell factories are the core link in the green biomanufacturing of natural products such as biomedicines, fuels, foods and chemicals. Natural microbial manufacturing systems have gradually been unable to meet the needs of current industrial production, so how to obtain a green, efficient, diversified and robust microbial manufacturing system is one of the key issues that need to be solved urgently. With the development of synthetic biology, metabolic engineering, protein (enzyme) engineering, and nanobiology and interdisciplinary integration, the construction of green and efficient microbial manufacturing system based on synthetic biotechnology provides new ideas and methods for solving the research and development dilemma of efficient microbial natural product manufacturing system, which can break through the bottleneck of microbial natural product discovery and manufacturing, design new biosynthetic pathways, and produce more natural products and analogues. In this study, we innovatively constructed the efficient microbial manufacturing systems based on synthetic biology techniques from the following three aspects: 1) Genome design, modification and assembly - CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus; 2)Programmable genetic control systems - In terms of novel gene expression regulatory elements based on inducible synthetic transcription factors, a novel biosensor based on inducible bifunctional synthetic transcription factors was constructed to achieve dynamic regulation and modification of yeast-centered carbon metabolism; In terms of gene expression regulation based on response to specific substrate signals, the mechanism of substrate-induced transcription and metabolism response to ester aromatic compounds in yeast (Kluyveromyces marxianus) was elucidated. 3)Protein/enzyme molecular design - A novel cell surface display protein/enzyme system for constructing the highly efficient Bacillus subtilis-based whole-cell biocatalysts (i.e., enzyme/protein micro-nano particles) has been developed. In this study, the unnatural and efficient microbial manufacturing systems with excellent fermentation performance and robustness were successfully constructed, and the high yield of important active natural products was achieved. The development and application of green and efficient microbial manufacturing systems based on synthetic biotechnology is expected to bring revolutionary technological changes to the foods, fuels, medicines, chemicals and other industries.
报告人2:邱爽 10:00-11:00
(其中:学术报告45分钟;自由交流15分钟)
题目:食品大分子的相互作用及在工业生产中的应用
The Interactions and Industrial Applications of Starch and Non-starch Food Ingredients
摘要:植物多糖类生物聚合物的分子结构及相互作用在食品生产中有重要意义。在食品加工过程中,需要通过控制大分子的相互作用来解决产品研发中的问题,例如:抑制淀粉老化,改善天然淀粉凝胶特性。本研究从植物大分子的微观结构、空间构型、性质表征着手,研究新型淀粉、阿拉伯木聚糖(Arabinoxylan, AX)多糖类大分子的互作机制和改性方法。本研究解析了新型极小颗粒淀粉和高粱AX植物大分子特性,探讨了淀粉和AX的复合物的凝胶性质和老化性质、及其相互作用的机制。本研究还结合大分子复合体系的理论基础和互作机制,探索了符合企业生产要求、中试级别的淀粉类食品、苹果类产品的新型热加工、非热加工工艺,解决了产品研发过程中影响货架期的关键因素。
邱爽博士于2016年从中国农业大学食品科学与营养工程学院取得博士学位,在康奈尔大学食品系进行博士后工作54个月,美国农业部(USDA-ARS)进行博士后工作12个月。已发表SCI论文24篇,文章引用数760余次。以第一和通讯作者在Carbohydrate Polymers, Food Hydrocolloids, Food Chemistry等期刊发表SCI研究论文11篇。
The microstructural properties and interactions of plant polysaccharides show significant impacts on food processing. However, the study of modifying the defects of food polymer composites, such as starch staling and the inferior properties of native starch gel, in food manufacturing scale is still scarce. This research investigated the microstructure and spatial conformation of plant polymers, starch and arabinoxylan (AX), to evaluate the interactions among polysaccharides, which contribute to the management of polymer physicochemical properties in food matrix. The researcher has studied the macromolecular properties of a novel very-small-granule starch and sorghum AX, the interactions of corn starch and corn AX, the gelling and retrogradation properties of starch/AX composite. The researcher has also conducted experiment on a shelf-stable rice product and non-thermal processed apple products in pilot-plant scale to verify the idea during food manufacturing.
Dr. Shuang Qiu obtained his Ph.D. degree from China Agricultural University in 2016. He has been conducting postdoctoral research in the department of food science in Cornell University for 54 months, and in USDA-ARS for 12 months. Dr. Qiu has published 24 papers which received more than 760 citations. Among which, he published 11 papers in the top journals such as Carbohydrate Polymers, Food Hydrocolloids, Food Chemistry to name a few, as the first/corresponding author.