时间:2022年5月28日(星期六) 8:20-18:00
地点:第三综合楼A705会议室
会议号:腾讯会议 590728085
主办:华中农业大学、湖北洪山实验室
承办:植物科学技术学院
报告人1;Yeyin Shi 内布拉斯加林肯大学(美国) 8:30-9:00
题目:Digital technologies and tools enabled plant phenotyping
She has a teaching and research appointment focused on digital agriculture. Specifically, the goal of her research program is to develop and apply sensing and information technologies to facilitate and automate the phenotype and stress detection and quantification of crop and livestock for an improved production and management.
报告人2:Xiaopeng Song 德克萨斯理工大学(美国) 9:00-9:30
题目:Monitoring regional-to-global cropland change for food security
长期从事基于遥感数据的土地利用和土地覆盖变化研究。研究成果发表于Nature, Nature Sustainability 和Nature Food 等期刊。本报告主要介绍卫星监测区域至全球尺度农田变化研究的最新进展,及对粮食安全、生态保护和灾难救济的意义。
报告人3:Bin Peng 伊利诺伊大学厄巴纳香槟分校(美国) 9:30-10:00
题目:High-resolution satellite images reveal waterlogging risk of farmland in the U.S. Midwest
长期从事生态水文学、农业生态学、遥感与地理信息科学、数字/智慧农业和可持续农业等相关领域的科学研究工作。
报告人4:Jianfeng Zhou 密苏里大学(美国) 10:00-10:30
题目:AI-enabled phenomics and precision agriculture for next-generation plant breeding and farming
He is the head of MU Precision and Automated Agriculture Lab, the home for 10+ graduate students. Dr. Zhou’s research interest is mainly on precision agriculture, high-throughput crop phenotyping and robotic harvesting technologies using emerging sensors, UAV, internet of things, machine vision, robotics and artificial intelligence.
报告人5:Peng FU 哈里斯堡大学(美国) 10:30-11:00
题目:Advances in high-throughput phenotyping of photosynthesis: progresses and challenges
Before working at HU, he was a research fellow at University of Illinois at Urbana-Champaign, Illinois, USA, where he was financially supported by the Bill & Melinda Gates Foundation to conduct research in phenotyping of photosynthesis for improved crop production in the U.S. Midwest and worldwide. He obtained his Ph.D. degree in Spatial and Earth Sciences at Indiana State University. His research interests cover a wide range of remote sensing and geospatial applications in environment, plant physiology, natural resources, and urbanization.
报告人6:Yelu Zeng 中国农业大学 11:00-11:30
题目:Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses
本科毕业于武汉大学,于中国科学院遥感与数字地球研究所硕博连读并取得博士学位,先后在美国斯坦福卡内基研究所、美国西北太平洋国家实验室、美国威斯康辛-麦迪逊大学,担任博士后及研究科学家,长期从事植被荧光与辐射传输模型。
报告人7:Tianyi Wang 中国农业大学 11:30-12:00
题目:Precision control of crop diseases and pests using modern agricultural techniques
王天一博士在博士与博后期间研究方向是使用无人机与智能农业装备对作物病虫害进行精准预测。随后于2022年作为优秀人才进入中国农业大学工学院参加工作,主要研究方向是智慧草业与草业智慧装备。
报告人8:李敏慧 德国柏林工业大学(德国) 14:30-15:00
题目:Dynamic monitoring of crop growth for precision agriculture using 3D imaging and multispectral imaging—Bridging the gap between field phenotyping and remote sensing
柏林工业大学博士候选人,莱布尼茨农业工程与生物经济研究所(The Leibniz Institute for Agricultural Engineering and Bioeconomy,ATB)博士研究员,获国家留学基金委(CSC)全额资助赴德国攻读博士学位。从事基于现代感知技术的智慧农业研究。
报告人9:李博 先正达(英国) 15:00-15:30
题目:Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging
长期致力于计算机视觉与机器学习方面的算法开发和应用,在多种图像传感器领域包括2D、3D、多光谱、高光谱以及热成像方面拥有丰富的研究和工程经验。于2014开始专注于基于计算机视觉的农业表型及定量遥感反演技术研发,推动农作物生长监测与选种、育种中表型解析从经验向定量、从低通量向高通量、从平面到立体的转变,并自主开发了基于高通量计算机视觉、图像处理算法、机器学习等方法的农作物高通量生长监测和表型解析的关键技术。
报告人10:Yan Jin 爱尔兰农业部(爱尔兰) 15:30-16:00
题目:Technical efficiency of intensive and extensive technology in dairy farming in the European Union
Her research focuses on the impact of regulating the cultivation and marketing of crops derived from genetically modified organisms, new plant-breeding techniques, and organic farming systems. Her research interests include the welfare impacts of public policies and regulations, risk and uncertainty, stochastic modelling, technology adoption, and social network analysis.
报告人11:Ji Zhou 剑桥作物研究| NIAB创新实验室(英国) 16:00-16:30
题目:Combining multi-scale phenotyping, AI-powered analysis with genetic mapping studies to connect lab-based plant research with in-field crop improvement
leads NIAB’s (Cambridge Crop Research) Data Sciences Department, focusing on developing multi-scale crop phenotyping, AI-driven phenotypic analysis, and cost-effective remote sensing technologies for key agricultural and horticultural crops such as wheat, oilseed rape, lettuce and apple. To address challenging yield and quality related research questions in the context of global climate change, Ji and his China-UK laboratory have developed a range of research tools and resources using UAV, LiDAR, Internet of Things and low-cost sensing techniques.
报告人12:王楚锋 华中农业大学(学生报告) 16:30-16:50
题目:Field rapeseed growth monitoring and regulation decision making coupling crop growth model and satellite – airborne - ground based remote sensing technology
华中农业大学植物科学与技术学院作物信息学专业的博士生,主要研究方向包括基于无人机载消费级传感器的作物长势监测,基于空天遥感技术的油菜叶面积评估以及田块、区域尺度的油菜长势调控。
报告人13:张晓雯 华中农业大学(学生报告) 16:50-17:10
题目:Farmers’ preferences and willingness to pay for smart farming technologies
华中农业大学经济管理学院2022级在读博士研究生。从事农业技术经济和数量经济学领域研究,主要利用视频、VR等信息技术开展复杂性农业技术的推广扩散以及农户采纳行为研究
报告人14:吕振刚 华中农业大学(学生报告) 17:10-17:30
题目:Study on maize leaf disease monitoring based on artificial intelligence and spectral analysis technology
华中农业大学资环学院在读博士研究生,研究方向为植物病虫害遥感监测预警。
报告人15:戴国新 华中农业大学(学生报告) 17:30-17:50
题目:Prediction and analysis of crop metabolites by hyperspectral omics
华中农业大学植物科学与技术学院作物遗传育种专业博士在读,研究方向为作物表型组学及生物信息学。主要研究内容为利用光谱成像技术预测作物大分子蛋白质、淀粉等及小分子代谢产物,并用生物信息学手段对其进行遗传解析。
持续、健康发展的农业是国家稳定和安全的基石。将现代信息技术与智能装备融入农业生产全过程已然成为当今世界现代农业发展的大趋势。2014-2022年中央一号文件中均多次提到要加快发展“智慧农业”,大力发展智慧农业不仅是促进农业持续发展的工具和手段,更是保障我国农业可持续发展的重要战略基础,也是解决未来我国高素质农业人才贮备的重要举措。
华中农业大学十分重视智慧农业交叉学科建设,学校将发展智慧农业作为十四五重点支持领域。2018年,整合植物科学技术学院、工学院、信息学院、经济管理学院等单位的相关平台与师资力量,将信息技术、大数据技术和工程技术与作物学进行深度交叉融合,组建了作物信息学研究中心和智慧农业系,申报并获批作物信息学硕士点与博士点二级学科。2020年,首批申报并获批“智慧农业”本科专业,进一步推动新农科人才培养模式的改革与创新。